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Abstract

This paper analyses the spatial evolution of steep directionally spread transient wave groups on deep water and identifies key nonlinear dynamic

processes in their formation. Sightings and field measurements of unexpectedly large ‘freak’ waves on the open ocean appear inconsistent with

standard statistical distributions, but it has only recently become practical to study them via numerical experiments. The frequency focusing of

many wave components, spread in both frequency and direction, provides a sufficient concentration of energy to trigger nonlinear effects. The

evolution of these waves, based on a realistic model for the peak of an ocean spectrum, is computed by a ‘fully’ nonlinear pseudospectral scheme.

The steepest wave groups form a prominent peak crest, which could be considered to be a ‘wall of water’. The formation of this structure is

controlled by the group properties of the wave field and results in rapid changes to the group shape relative to a linear solution. There is a dramatic

contraction of the group along the mean wave direction, which appears to be balanced by a dramatic expansion of the group in the transverse

direction. These processes appear to be consistent with third-order nonlinear wave–wave interactions.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Directional spread; Focused wave groups; Freak waves; Near-resonant interactions; Nonlinear
1. Introduction

In recent years there has been increased interest in the

possibility of unexpectedly large ocean waves, termed ‘freak’

or ‘rogue’ waves, inconsistent with standard statistical

distributions. Seafarers have logged sightings of such waves

for many years, and there are now field measurements to

support their existence. On 1st January 1995, during a storm

with significant wave height of 12 m, Statoil’s ‘Draupner’ gas

platform was struck by a wave of measured crest height 18.5 m,

causing minor damage to equipment below the deck, [1].

Inspection of the time history of the surface elevation at the

platform containing the large crest shows that the depth of the

preceding trough was only 7.5 m: there was no obvious

indication of the extreme wave about to strike. The

Schiehallion FPSO, a BP Amoco vessel moored in the North

Atlantic, was hit by a large wave on 9th November 1998. The

impact pushed in bow plating at 20 m above the mean water

level, during a sea state with an estimated significant wave
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height of 14 m. In the autumn of 1995, the ship’s master of the

Queen Elizabeth 2 recalls seeing ‘a wall of water for a couple

of minutes’ during a severe storm off Newfoundland. These

examples highlight some characteristics commonly used to

describe ‘freak’ waves.

Recent field measurements show that ocean wave spectra

are broadbanded and highly directional, and so large ocean

waves may be expected to be strongly dispersive. An analysis

of field data by Jonathan et al. [2], measured at the Tern

platform in the northern North Sea, suggests that even the

largest wave events are well modelled by a second-order

solution applied to the underlying frequency spectrum. These

findings imply that ‘freak’ waves are likely to be rare, and that

strong nonlinear effects are needed to trigger their formation.

Whether the existence of ‘freak’ waves requires modifications

to standard offshore design methods remains to be seen.

Although there is no widely accepted model for the formation

of ‘freak’ waves, a recent review of possible physical

mechanisms leading to ‘rogue’ waves has been presented by

Kharif and Pelinovsky [3]; this review concentrates on model

evolution equations. In contrast, our paper gives numerical

simulations of the full water wave equations.

There has been considerable study of the nonlinear

dynamics of gravity waves on deep water in the last forty

years. The lowest order nonlinear mechanisms that can alter the

dynamics of a group of waves are the third-order resonant

interactions of Phillips [4], which permit certain combinations
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of three wave components to transfer energy to a fourth

component. However, Lighthill [5] was the first to show, by

Whitham’s averaged Lagrangian technique, how nonlinear

dynamic effects could increase the peak amplitude and distort

the shape of a slowly varying wavetrain of finite amplitude. He

was also the first to note that, for a wave group with shorter

waves ahead of a central peak in amplitude and longer waves

behind (the frequency focusing of a wave group), linear

frequency dispersion and nonlinear amplitude dispersion can

combine to cause a local enhancement of the peak amplitude.

This third-order effect was shown by Benjamin and Feir [6] to

give rise to the instability of a regular wavetrain to long wave

modulations. This is a narrowbanded process and is likely to be

important in the formation of large waves as much of the

energy in ocean wave spectra is concentrated close to a peak.

The simplest mathematical model, relevant to modelling a

spectral peak, that includes these effects is the nonlinear

Schrödinger equation (NLS), which describes the envelope

modulations of weakly nonlinear surface gravity waves on

deep water (reviews of known solutions are given by Peregrine

[7], and Dysthe and Trulsen [8]). An extensive review of the

properties of the NLS and instabilities that give rise to energy

transfer in ocean spectra is given by Yuen and Lake [9].

Several extensions have been made to the NLS model [10–12]

with regard to the problems of energy leakage and bandwidth

constraints, which have made it more suited to modelling on

spread seas. Dysthe et al. [13] have subsequently used these

models to study random wave spectra, as mentioned in Section

4. However, only a few investigators have used such models to

consider the shape taken by isolated extreme spread sea waves.

Lo and Mei [14] showed that an initial wave group elongated

along the mean wave direction spreads in the transverse

direction to form a ridge, whereas the behaviour of an initial

group elongated in the transverse direction is dominated by

group splitting. More recently, Osborne, Onorato and Serio

[15] demonstrated that unstable modes in two horizontal

dimensions can cause waves much larger than the background.

The largest ocean waves are probably highly transient,

arising from a random background where both the wave

nonlinearity and directionality significantly affect the local

properties of the extreme event [16]. The frequency focusing of

a wave group, whereby many wave components have maxima

that coincide at a particular point in space and time, provides a

model that is consistent with the description of a transient event

and produces a sufficient concentration of energy to trigger

nonlinear dynamic effects. The unidirectional, ‘fully’ nonlinear

numerical simulations of Taylor and Haagsma [17] showed

that as a group focuses it becomes narrower and much higher

than linear theory would predict. This extra elevation was

found to be up to 30% greater than the corresponding linear

solution for narrowbanded groups in the wave flume

experiments of Baldock et al. [18]. In both the experimental

and modelling work the extra elevation increases with the input

amplitude of the group, but decreases with its bandwidth. Such

behaviour shares features in common with the algebraic

breather solutions to the NLS equation [7,8]. Detailed

comparisons of ‘fully’ nonlinear simulations for both
unidirectional and spread sea groups with the results from the

NLS equation will be given in a future paper.

The wave basin experiments of Johannessen and Swan [16]

showed that, for fixed initial input amplitudes, even a small

amount of directional spreading leads to a significant reduction

in the extra elevation of a focused wave group, which is now

almost completely captured by a second-order model. They

also found local directionality changes requiring a greater

initial input amplitude to initiate wave breaking at the

nonlinear focus as compared to unidirectional groups. These

results were confirmed by the numerical simulations of

Bateman [19] and Johannessen and Swan [20]. Although

there seems to be nothing extraordinary about the maximum

surface elevation attained in these experiments, the authors did

show that significant energy is still transferred to high

wavenumber components well beyond the linear spectral

range. This wave energy was shown to be freely propagating

by the ‘fully’ nonlinear numerical replication of these

experiments by Johannessen and Swan [20]. Large energy

transfers to high wavenumbers have also been observed in

unidirectional extreme waves [18], where they are consistent

with a contraction of the group, but their effect on the shape of a

spread sea group is unclear. As descriptions of ‘freak’ waves

refer to spatial characteristics, a detailed analysis of the spatial

evolution of focused wave groups on a spread sea is required in

order to investigate the consequences of these large energy

transfers.

Our aim is to present some numerical simulations of steep

focused wave groups on deep water and show how the shape of

these waves alters due to nonlinear dynamics. The most

nonlinear wave groups form a prominent steep peak crest with

a near constant elevation more than one wavelength wide

(200 m in our simulation) in the transverse direction (crestline).

This wall-like shape is shown in Fig. 1 for an input wave

steepness (Akp) of 0.3. Note that we refer to wave groups by

their input steepness, Akp—where A is the linear focused

amplitude and kp is the wavenumber of the peak of the initial

unidirectional spectrum, which is the steepness of the focused

wave group that would form under linear dynamics. The

analysis of the formation and subsequent evolution of this

extreme wave event is the main concern of this paper.

2. Numerical method

2.1. Numerical scheme

The formation of extreme deep water waves is studied by

the frequency and directional focusing of many wave

components. It is assumed that such events may be modelled

on an incompressible inviscid irrotational fluid so that the

motion is governed by Laplace’s equation for the velocity

potential. In addition there are no underlying currents and the

effects of surface tension and the interaction of the air with the

water surface are neglected. This allows the specification of

two free surface boundary conditions, which lead to the explicit

expressions for the time derivatives of the surface elevation,

h(x,y,t), and the velocity potential, f(x,y,z,t),



Fig. 1. Frontal view of surface elevation at point of nonlinear focus (tZ1.3Tp), AkpZ0.3. The frame of reference is moving at the linear group velocity. The surface

has been shaded above a threshold of 0.15 m and the vertical scale enhanced by a factor of 100 with respect to the horizontal scales.
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Given a suitable initial condition, the equations above may be

time-stepped to give the evolution of the water surface.

However, their evaluation requires computation of the

tangential and normal derivatives of f on the surface. For

calculation of the normal derivative, knowledge of f in the

fluid interior is necessary and becomes the crucial step in any

accurate and efficient time evolution scheme. Craig and

Sulem [21] showed that a Dirichlet–Neumann operator (G-

operator) could be used for the accurate conversion of the

velocity potential on the surface, fs, into its normal derivative

on the surface. This approach was extended to the simulation of

directional seas by Bateman et al. [22]. They defined the

G-operator as

GðhÞfs Zfz: (3)

The surface elevation and velocity potential are represented by

Fourier series and the wave motion is restricted to a domain

that is periodic in both horizontal dimensions, x and y. The

surface velocity potential and its vertical derivative are

expanded as Taylor series about the mean sea level and, with

a Taylor series expansion of the G-operator, are substituted into

Eq. (3). By comparing terms of the same degree of

homogeneity, a recursive formula for the G-operator is

obtained, which has its first three terms given by
G0 ZD tanhðDhÞ (4a)

G1 Z hD2KD tanhðDhÞhD tanhðDhÞ (4b)

G2 Z
1

2
h2D2D tanhðDhÞKhD2hD tanhðDhÞ

K
1

2
D tanhðDhÞh2D2

CD tanhðDhÞhD tanhðDhÞhD tanhðDhÞ; (4c)

where h is the uniform depth, DZKiv=v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cy2

p
is a complex

radial derivative operator and tanh(Dh)/sgn(D) in the limit of

infinite depth. The G-operator contains both spatial and

spectral information and so is evaluated by performing

multiplications in physical space and differentiations in

wavenumber space. The FFT may be used for the frequent

switching between physical and spectral space, which gives a

method that is O(n log n). As this is a pseudospectral method,

the surface elevation must be a single valued function of the

horizontal coordinates and so simulations are restricted to the

early stages of wave breaking before the surface becomes

vertical. Bateman et al. [22] validated the scheme against the

high quality wave basin data of Johannessen and Swan [16] for

groups with a range of bandwidths, directional spreading, and

steepness up to the physical breaking limit. The scheme was

shown to be efficient, robust and suitable, even on a PC, for

modelling broadbanded, highly nonlinear directional sea states.
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2.2. Initial spectral model

An initial condition is now required that will evolve over a

given time to form an extreme wave. The average shape of an

extreme in a random sea is a useful concept and Lindgren [23]

showed that, in a linear random Gaussian signal, the average

shape of a large positive or negative peak tends to the scaled

autocorrelation function of the signal. In a series of papers from

1981 onwards (see for example [24–26]) Boccotti developed

similar ideas in the context of wind waves, showing that the

autocorrelation function matches the average shape of a large

crest in both time and space. This idea was transferred into

offshore engineering practice by Tromans et al. [27], where it is

now known as NewWave. An important feature of Lindgren

and Boccotti’s model is the link between an averaged local

extreme event and the global properties of the sea state, since

the autocorrelation function is the Fourier transform of the

underlying power spectrum. Both temporal and spatial aspects

of the model have been validated against field data for waves in

the Straits of Messina [25] and for large deep water waves in

severe winter storms in the northern North Sea [28]. In the

context of this paper we assume that the early stages of the

formation of an extreme event are dominated by linear

dispersion. Thus, the shape of our initial condition matches

that of a scaled autocorrelation function in space at twenty

wave periods before focus. Thereafter, as the wave group

approaches focus, nonlinear effects are likely to become

important if the group is sufficiently steep. Hence, we use the

‘fully’ nonlinear numerical scheme to follow the subsequent

evolution of the wave group.

A common method in offshore engineering of modelling a

directional frequency spectrum, F(u,q), is as the simple

product of a unidirectional spectrum, S(u), and a spreading

function, D(q), where u is the radian frequency and q the

direction of wave propagation,

Fðu;qÞZ SðuÞDðqÞ: (5)

The JONSWAP spectrum, derived from field measurements

[29], is considered to be a suitable description of a broadbanded

ocean spectrum in a fetch-limited sea. However, much of the

energy of this spectrum is concentrated in a narrow range of

frequencies around its peak and so we consider the modelling

of components close to the peak of the spectrum only as an

important first step in understanding the behaviour of

directional broadbanded events. We use a Gaussian function

for such a model

SðkÞZ exp
KðkKkpÞ

2

2k2
w

� �
; (6)

where k is the wavenumber, kp is the wavenumber correspond-

ing to the position of the peak of the initial linear spectrum and

kw is the spectral width. We set kwZ0.004606 mK1, so that

S(k) given in Eq. (6) (when considered in terms of u) fits the

shape of the JONSWAP peak with a peak enhancement factor

of gZ3.3 and defines S(u) required by Eq. (5).
Donelan et al. [30] investigated the amount of spreading in

high quality wind generated wave data recorded on Lake Ontario

and found a low degree of spreading at the spectral peak, which

increased with frequency. A comparison of their proposed

spreading distribution with a wrapped normal Gaussian

distribution suggests an rms spreading parameter of 208 at the

frequency of the spectral peak, increasing to 308 at 1.4 times the

frequency of the spectral peak. An analysis of directional ocean

wave spectra by Ewans [31], measured off the west coast of New

Zealand for a large range of wind and wave conditions, showed

that for frequency components below twice the frequency of the

spectral peak the spreading is less than 208, whereas the higher

frequencies are considerably more spread. These two studies

suggest that the use of a wrapped normal Gaussian distribution

with a constant rms spreading parameter, s, of 158 will give

realistic spreading for our spectral peak model, D(q). We note

that F(u,q) for our spectral peak model is the product of two

Gaussian functions, so the surface elevation of the focused linear

event can be approximated as

hðx;yÞZAeKð1=2ÞS2
xx

2

eKð1=2ÞS2
yy

2

cosðkpxÞ: (7)

Thus, for narrow bandwidths the spatial bandwidth, Sx, is

equivalent to the spectral width of the underlying unidirectional

spectrum and the spatial bandwidth, Sy, is related to the rms

spreading angle in radians, srms, by SyZsrmskp. These

relationships are valid for the wave groups considered in this

paper, as the specified initial conditions are sufficiently narrow

banded for Eq. (7) to be an excellent approximation to the shape

of the linear focused NewWave groups.

The NewWave model with a wave power spectrum given by

Eqs. (5) and (6) defines the initial amplitudes of the individual

wave components in our simulations. We use the linear

dispersion relationship (u2Zjkjg) to specify the phases of the

individual wave components at twenty time periods before the

linear focus, such that under linear dynamics all the wave

components would have maxima coinciding at the spatial point

xZyZ0 at the time tZ0. Thus, our initial condition leads to an

event that is both direction and frequency focused.
2.3. Validation of the results

The area of ocean in the assumed periodic computational

domain is 3.6 km in the mean wave direction by 5.8 km in the

transverse direction, with 256 spatial points in each direction.

For adequate resolution of the initial wave spectrum the spectral

peak is placed at a wavenumber kpZ16k0Z0.02796 mK1

(corresponding to a wavelength of 225 m and a time period of

TpZ12 s), where k0 is the wavenumber corresponding to the

longest wavelength modelled in the x-direction. Therefore the

highest wavenumber included in the simulation is at eight times

the wavenumber of the spectral peak. The simulations are

performed with a fifth-order expansion of the G-operator,

although the results have also been checked with a seventh-order

expansion, this allows accurate resolution of all fifth-order

nonlinear interactions. The simulation is started 20 time periods

(240 s) before the linear focus so that a linear model, corrected
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for the second-order bound wave terms of Longuet-Higgins [32]

provides a sufficiently accurate description of the surface at a

time when the long-term effects of resonant interactions are

assumed negligible. At this early time the dispersed group

possesses only small bound wave corrections so omission of the

third and higher order terms in the definition of the initial

condition is acceptable. The subsequent evolution is of course

‘fully’ nonlinear. Several checks have been made to establish the

integrity of the results. As there is no energy input or dissipation

in the scheme the conservation of the total energy in the domain

is monitored and results are presented only for cases with a non-

physical variation in the total energy of less than 0.5%. The

reversibility of the simulations is verified by using the values of

the surface elevation and surface velocity potential at the end of

one run as the initial conditions of a second run, which is stepped

backwards in time to the original initial condition. In none of the

simulations reported in this paper was there any wave breaking

(which breaks the scheme). Previous simulations by Bateman

[19] have shown that simulations are accurate up to the onset of

breaking. Indeed Bateman’s comparison with the experiments

of Johannessen and Swan [16] suggest that the scheme can be

used to predict the onset of breaking based on the vertical

acceleration of the fluid particles.
3. Spatial evolution of spectral peak

3.1. Shape of sea surface

There are striking differences between the shape of the

linear and nonlinear focused events. We define the focused

event as the point in time when the peak surface elevation is a

maximum with respect to the entire simulation. Under linear

evolution the initially well dispersed wave group (Fig. 2(a))

forms a focused event, at tZ0, that has a line of symmetry

along a transverse direction and has its peak crest at the centre

of the group (Fig. 2(b)). This crest is 10.7 m high and is

preceded by a deep trough and a fairly high crest. In contrast,

under nonlinear evolution the wave group forms an event, at

tZ1.3Tp, that is highly asymmetrical about a transverse

direction with the peak crest moved to the front of the group

(Fig. 1). This crest is 12.8 m high, but is preceded by a
Fig. 2. Linear surface elevation, AkpZ0.3: (a) tZK20Tp; (b) tZ0 (linear focus). The

shaded above a threshold of 0.15 m and the vertical scale enhanced by a factor of
relatively shallow trough, which is only just visible in Fig. 1,

and a low crest. The deep trough seen in Fig. 1 is directly

behind the peak crest. The prominence of this peak crest shares

features with the shapes of the modulational instabilities of the

two-dimensional NLS equation reported by Osborne et al. [15]

and Kharif and Pelinovsky [3]. Although the peak crest of the

nonlinear event is only slightly higher than the linear one, its

length in the transverse direction is much greater and it has a

locally more planar front than the linear event. The subsequent

evolution of the spatial structure of the wave group is shown in

Fig. 3. The height and transverse width of the peak crest of the

nonlinear event, with minimal preceding wave structure, are

highly suggestive of a ‘wall of water’.

These features of the peak crest persist for several time

periods beyond the nonlinear focus, long after it might be

expected that linear dispersion would cause the group to fall

apart. This is seen in Fig. 3(d), (h) and (l) at two, four and six

time periods after the nonlinear focus respectively, when the

peak crest within the group attains values of 12.6, 12.0 and

11.2 m respectively (the peak crest coincides with the

maximum of the wave group envelope at these times). We

note that the linear focused amplitude is 10.7 m, a value

exceeded by the peak crest that forms six time periods after the

nonlinear focus. Indeed over the entire evolution the linear

focused crest is exceeded in our ‘fully’ nonlinear simulation for

more than 10 wave periods. Ahead of the peak crest the wave

structure, which was of a low level at the focus time, almost

disappears. The peak crest continues to widen in the transverse

direction, as the group evolves from the focus point, and yet

still has a locally fairly planar front.

The persistence of the focused wave group can perhaps be

related to the observation of the ship’s master of the Queen

Elizabeth 2. Assuming the focused group could form in a

random sea, elongated extreme crests might be visible for

perhaps 8 wave periods from the ship’s bridge. With a wave

period of w15 s this corresponds to 2 min — compatible with

the observation. It should be noted though that in this time four

crests would pass through the extreme wave group leading to

the ‘beating’ seen in Fig. 3.

Dramatic changes also take place behind the peak crest with

evidence of two nonlinear processes: group splitting along the
frame of reference is moving at the linear group velocity. The surface has been

100 with respect to the horizontal scales.



Fig. 3. Nonlinear surface elevation, AkpZ0.3: (a), (b) tZ2.3Tp; (c), (d) tZ3.2Tp; (e), (f) tZ4.2Tp; (g), (h) tZ5.2Tp; (i), (j) tZ6.1Tp; (k), (l) tZ7.1Tp. The left hand

column gives the rear view and the right hand column gives the frontal view of the group. The frame of reference is moving at the linear group velocity. The surface

has been shaded above a threshold of 0.15 m and the vertical scale enhanced by a factor of 100 with respect to the horizontal scales.
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mean wave direction and new wave structure travelling at an

angle to the mean wave direction. These processes may be

identified by tracing how the crest directly behind the peak crest

of the nonlinear focus event (Fig. 4) evolves with time (Fig. 3). In

Fig. 4 this crest is actually formed from three partially

overlapping waves, which give the appearance of a central crest

with two shoulders. At one time period after focus the central crest

is slightly in front and higher than the two outer crests (seen from

the three local maxima on the highest wave in Fig. 3(a)). Two time

periods later the two outer crests are slightly in front of the central

crest, which is now lower than these two crests (Fig. 3(e)). The

two outer crests move further ahead of the central crest after
another two time periods and there is clear definition between the

three distinct waves (Fig. 3(i)). The height of this central crest is

seen to decrease with time relative to the crest directly in front of it

on the centre line of the group (Fig. 3(b), (f) and (j)). However, for

a single group of waves all the crests behind the peak crest are

rising and all the crests in front of the peak crest are falling,

therefore Fig. 3 shows the splitting of the group along the mean

wave direction. New wave structure develops from the nonlinear

focus event, which is seen by tracing the evolution of the

shoulders on the crest directly behind the peak crest (Fig. 4) in

Fig. 3(c), (g) and (k). At the nonlinear focus the shoulders are level

with the central crest directly behind the peak crest, but are at an



Fig. 3 (continued)
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angle to the mean wave direction. The two outer crests forming

these shoulders gradually separate from and overtake the central

crest. In Fig. 3(g) and (k) these two outer crests have following

crests, which are about to pass through the next crest on the centre

line of the group. This new structure on the outer edge of the group

is interleaved with the crests travelling in the mean wave direction

and it is this structure which rises up from the sides to form the

new peak crest at the front of the main group. Contour plots of the

nonlinear surface elevation at three times after focus (Fig. 5) show

that the new wave structure is travelling at about 308 to the mean

wave direction and has shorter wavelength than the waves

travelling along the centre line. This suggests that this wave

structure is associated with energy transferred to wavenumbers

higher than the spectral peak.
3.2. Visualizing changes to group shape

As the nonlinear event forms there is a dramatic contraction

of the group, local to the peak crest. This is seen in Fig. 6 by

considering vertical cross-sections through the wave group

along the mean wave direction. The wave group exhibits

essentially linear behaviour during the first 10 time periods of the

nonlinear evolution. Rapid changes take place to the group in the

following 10 time periods, up to the focus point, leading to

strong differences between the nonlinear focused event

(Fig. 6(a)) and the symmetric linear focused event. The

nonlinear evolution results in a prominent peak crest close to

the front of the wave group. This crest is considerably steeper

and is much narrower than the peak crest in the linear focused



Fig. 4. Rear view of surface elevation at point of nonlinear focus, AkpZ0.3. The frame of reference is moving at the linear group velocity. The surface has been

shaded above a threshold of 0.15 m and the vertical scale enhanced by a factor of 100 with respect to the horizontal scales.
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wave group. A measure of this local contraction in the mean

wave direction may be given by the distance between the zero

crossing points either side of the peak crest, which for the linear

peak crest is 113.0 m and for the nonlinear peak crest is only

84.4 m. This contraction of 25% could be merely due to the

presence of bound wave structure, which makes crests taller and

spikier, and troughs less deep and more rounded. However, a

signal constructed by the differencing of the crest-focused and

trough-focused signals (Eq. (10)) gives 95.1 m for the same

measure and so this contraction is not a second order effect.

There are also strong differences in the wave structure ahead of
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Fig. 5. Amplitude contours of the nonlinear surface elevation, AkpZ0.3: (a) tZ3.2

mean sea level starting at hZ0.5 m. The frame of reference is moving at the linea
the peak crest, which for the nonlinear event gives little warning

of the following peak crest. The trough ahead of the nonlinear

peak crest is only 4.0 m deep and the crest in front of this trough a

mere 1.1 m high (Fig. 6(a)). The highly asymmetrical shape of

the nonlinear focused wave group suggests that not all of the

wave components are in phase. Although a relatively narrow

band of wave components has been specified for the initial

condition, it is clear that a more select collection of wave

components actually take part in the processes that form the

extreme event. The evolution after the nonlinear focused event is

also striking, since many of the features in Fig. 6(a) persist 10
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time periods later in Fig. 6(b) at a time when linear dispersion

might be expected to dominate the behaviour of the group. The

peak crest is still rather steep, tall (50% higher than a linear

prediction) and the heights of its preceding waves are almost

unchanged compared to the nonlinear focused event.

The profile of the isolated crest in Fig. 6(b) is similar to that

arising from modulational instability of a Stokes wave

simulated by Dyachenko and Zakharov [33]. Their simulation

is unidirectional and their initial condition is very narrow-

banded. Thus, the dynamics of their waves are dominated by

nonlinearity acting along a line. In contrast, the formation of

our extreme event is at least initially dominated by linear

dispersion, both in frequency and direction. However, it is

interesting that, at least locally, comparable extreme wave

events occur from very different initial conditions.

There is also clear evidence, seen from the double-peaked

trough in the centre of Fig. 6(b), of the group beginning to split

into two along the mean wave direction, as the waves that did

not participate in the focused event are left behind the peak

crest. Similar behaviour has been observed by Lo and Mei [14]

in their numerical simulations of the two-dimensional NLS

equation. The details of this splitting are presumably very

sensitive to the details of the initial condition—unlike the

formation of the main wave group, extended along the crests

and contracted along the direction of wave propagation.

The simulation of the formation of a focused event with a

deep trough at the centre of the group is useful in understanding

the processes involved in the formation of a tall crest. A

focused trough event, htr, is initiated by a linear input that is p

radians out of phase, i.e. inverted, compared to that required to

form a focused crest, hcr. A remarkable feature of the nonlinear

evolution in forming an extreme trough is that its global

behaviour is effectively identical to that for the formation of an

extreme crest, even for steep events close to breaking. The
troughs in the trough-focused simulation are aligned, in space

and time, with the crests of the crest-focused simulation and

vice versa (Fig. 6(a) and (b)) throughout the simulation. This

feature of crest-focused and trough-focused evolution has been

seen in the wave basin experiments of Johannessen and Swan

[16] and in the numerical spread sea simulations of Bateman

[19]. For wave groups that evolve linearly this behaviour is

obvious, but it is an important feature of nonlinear evolution

given the different local shapes of the two extreme events.

Therefore the formation of an extreme event is dependent on

the group properties of the wave field, such as amplitude and

shape, and not the absolute phasing of the waves within the

group. A general fourth-order Stokes-like perturbation expan-

sion for a crest-focused wave group, where all the amplitude

components, a, are positive and assumed to be slowly varying

with time and the interaction coefficients are given by cij, cijk,

etc., would be of the form

hcr Z
X
i

ai C
X
i;j

cijaiaj C
X
i;j;k

cijkaiajak

C
X
i;j;k;l

cijklaiajakal: (8)

The corresponding expansion for a trough-focused wave

group is

htr ZK
X
i

ai C
X
i;j

cijaiajK
X
i;j;k

cijkaiajak

C
X
i;j;k;l

cijklaiajakal: (9)

The even-order terms in these expansions have the same

sign, whereas the odd-order terms are of opposite sign; this

implies that the large-scale changes in group structure can
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only be consistent with odd-order nonlinear interactions. The

computational domain has sufficient resolution to accurately

model fifth-order wave-wave interactions (see Section 2.3), so

the third-order resonant interactions are accurately rep-

resented. Comparisons with simulations using the G-operator

truncated at G2 show that all the main group dynamics are

captured by third-order effects. Therefore these global

changes to the wave groups appear to be examples of the

combined third-order near-resonant interactions of Benjamin

and Feir [6] and the resonant interactions of Phillips [4].

The strong nonlinearity shown by the contraction of the wave

group in the mean wave direction should be apparent in the

temporal variation of the kinetic and potential energies. The

linear evolution of a wave group gives an equipartition between

kinetic and potential energy. However, for large amplitude

wavetrains Lighthill [34] showed that their average values

diverge at high wave steepness with the average kinetic energy

taking on a slightly greater value than the average potential

energy. At the nonlinear focus time in our simulations the

average kinetic energy has increased by about 1% with a

corresponding decrease in the average potential energy; there is

a return towards energy equipartition when the group is well

dispersed beyond the focus time.

The symmetry property of the crest-focused and trough-

focused evolutions permits their difference to be computed

giving a new meaningful signal, which may be used to analyse

the changes in the wave group dynamics during nonlinear

evolution. This differencing procedure defines a signal, which

we refer to as the locally linearised surface elevation,

hodd(x,y,t),

hodd Z ðhcrKhtrÞ=2: (10)

In terms of the general perturbation expansions for the crest-

focused wave group, Eq. (8), and the trough-focused wave

group, Eq. (9), the locally linearised surface elevation is given

by

hodd Z
X
i

ai C
X
i;j;k

cijkaiajak COða5Þ: (11)

This represents a signal in both space and time with all the

even-order bound wave structure removed, thus leaving the

free wave components and the odd-order bound wave

harmonics. Inspection of the locally linearised wave amplitude

spectra (Fig. 13, which is described in Section 4) shows only a

weak contribution from the third harmonics. Therefore this

locally linearised wave group may be used to visualize the

dynamic changes to the aspect ratio of the wave group

envelope without the dominant interference from the second-

order bound wave structure. After the first 10 time periods of

evolution the departure of the nonlinear evolution from the

linear solution is small (Fig. 7(a) and (b)); the overall shapes

are similar. However, the peak of the nonlinear envelope is

beginning to move towards the front of the group, accompanied

by a slight contraction of the group along the mean wave

direction. It appears that there is an initial delay period, while

linear dispersion brings the waves together, before a critical
concentration of energy can trigger significant nonlinear wave–

wave interactions. Dramatic changes take place to the group

shape in the following 10 time periods; linear dispersion and

nonlinearity produce a group that is most compact in the

transverse direction four time periods before the linear focus

time and from this point there is a rapid expansion relative to

the linear solution. At the nonlinear focus time there is a major

contraction at the front of the group, along the mean wave

direction, resulting in the dramatic form of the peak crest

(Fig. 7(c) and (d)). In a sense this is balanced by the vigorous

expansion of the group in the transverse direction, giving a

significantly more long-crested focused event. Indeed, com-

parison of the 10 m contours reveals that the transverse extent

of the tallest peak is 2.5 times wider in the nonlinear group than

in the linear group. This rather thin, but long crest sustains a

height of at least 10 m across a distance of 230 m. The

nonlinear group remains locally much more long-crested

beyond the focus point, while a group of waves is left well

behind the peak crest (Fig. 7(e) and (f)). Rapid nonlinear

interactions have formed a focused group which is locally

wider in the transverse direction than it is in the mean wave

direction, this represents a reversal in the aspect ratio of the

group in comparison with the linear solution.

3.3. Quantifying changes to group shape

The dramatic changes that take place during the nonlinear

evolution of a steep focused wave group have been shown to be

dependent on the group properties of the wave field. The wave

group described in Section 3.1 has been simulated for a range

of input wave steepness. Therefore this section considers some

approximate measures for these properties, such as amplitude

and bandwidths in the two horizontal dimensions, and how they

change with input wave steepness and time.

3.3.1. Amplitude changes

The maximum surface elevation reached during each

simulation is shown as a function of steepness in Fig. 8 for

the nonlinear focusing to form a tall crest, hcr, and to form a

deep trough, hcr; the linear values, A, are given as a guide to the

degree of nonlinearity. A comparison of the crest-focused

values to the linear solution reveals little change in maximum

elevation at low wave steepness and an appreciable gain, about

20%, in elevation only for the steepest groups. However, a

comparison of the peak of the locally linearised signal, defined

by Eq. (10), to the linear solution shows only a very slight

increase, about 6%, in elevation for the steepest groups. As the

third-order bound wave contributions appear to be negligible

even for the steepest wave groups (Fig. 13, which is described

in Section 4), then the application of the second-order solution

of Longuet-Higgins [32] to the locally linearised signal will

essentially return the crest-focused surface elevation. There-

fore, only for the steepest groups is there extra elevation

beyond a second-order prediction based on the underlying free

wave components at the nonlinear focus. This minimal gain in

elevation, at least for the particular choice of initial conditions,

is in stark contrast to the behaviour of unidirectional focused
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wave groups, which can produce large gains, up to about 20%,

above a second-order solution (for example in the experiments

of Baldock et al. [18]).
3.3.2. Bandwidth changes

The large contraction in the mean wave direction may be

measured by a bandwidth, based on a local approximation to

the wave group envelope. The shape of the linear focused event

is almost identical to a simple Gaussian envelope multiplied by

the carrier wave, Eq. (7). As the main interest is in dynamical
effects beyond a second-order description of the sea surface,

the locally linearised signal will be used to assess these

changes. The envelope of the locally linearised signal, A(x), is

considered, so that the interference effect as crests pass through

the wave group can be avoided, and fitted to a local Gaussian

envelope along the mean wave direction

AðxÞz �AeKð1=2ÞS2
xx

2

; (12)

where �A is the peak value of the locally linearised envelope.



Fig. 8. Maximum surface elevation at focus for a range of input wave group

steepness.
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This local measure for the bandwidth in the mean wave

direction may be tracked with time (Fig. 9) to highlight the

rapid contraction of the group around the peak crest. Initially

all the wave groups considered are well dispersed and so the

bandwidth is small. For the linear solution this value increases

slowly up to the focus time, when all the wave components are

in phase, giving SxZ0.00464 mK1 as is expected from Section

2.2. For the nonlinear evolution there is little departure from

the linear solution until about 12 time periods from focus; after

this time there is a rapid increase in the local bandwidth,

becoming more rapid with increasing wave steepness, which is

consistent with the envelopes of Fig. 7. This bandwidth

measure suggests that the peak crest is most compact slightly

after focus for the steepest groups and becomes most compact

at later times for groups of intermediate steepness. For the

wave group of steepness AkpZ0.3, analysed in Section 3.2, the

local bandwidth has increased by a factor of 3.3 (Fig. 10).

Beyond the focus time there is a reduction in the bandwidth as

the groups eventually disperse, but this reduction is slow

relative to the focusing of the group. The variation of the
Fig. 9. Variation of an approximate local bandwidth in the mean wave direction wi

bandwidth of the linear focused group is SxZ0.00464 mK1.
maximum of the local bandwidth against the square of the input

wave steepness is shown in Fig. 10.

The large expansion in the transverse direction may be

measured by a local spreading angle determined in a similar

way to the inline wave kinematics factor used by offshore

designers

f Z cos qu Z
Uinline

U1D

; (13)

which accounts for how the presence of spreading reduces fluid

particle velocities in comparison to a linear unidirectional

model (see [35]). In an analogous manner we define a local

spreading angle

qZ cosK1 hinline;env

henv

� �
; (14)

which gives a local measure of how long-crested the wave

group is at a particular spatial location. This local spreading

angle is calculated from the locally linearised surface elevation

in order to isolate the underlying dynamical effects that alter

the group shape, and envelopes are used to remove the

interference effect of crests passing through the group. This

parameter, like the measure for the bandwidth in the mean

wave direction local to the peak crest, is smoothed by taking a

running average over a time period.

This local spreading angle, Eq. (14), is evaluated in the

following manner. The Fourier series representation of a wave

group is given by

hðx;yÞZ
XM
mZ0

XN
nZ0

amncosðkxmxCkynyCFmnÞ: (15)

Each wave component makes a contribution to the surface

elevation of the group along the mean wave direction (yZ0),

and for each component propagating at an angle q to the mean

wave direction there is an equal contribution from a wave
th non-dimensional time from linear focus for a range of wave steepness. The
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component propagating at an angle of Kq. So, resolving along

the mean wave direction, the contributions from all the wave

components give the inline ‘surface elevation’

hinlineðx;yZ 0ÞZ
XM
mZ0

XN
nZ0

amncosðkxmxCFmnÞcos qmn; (16)

where

cos qmn Z kxm ðk
2
xm
Ck2

yn
ÞK1=2:

This quantity and its Hilbert transform, hHinline
, may be used to

calculate the envelope of the inline surface elevation

hinline;envðx;yZ 0ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

inline Ch2
Hinline

q
: (17)

This quantity has a simple physical interpretation, it is the

maximum horizontal fluid particle displacement at the surface

in the mean wave direction based on a linear wave model. In

order to determine a spreading angle local to the peak crest the

maximum value of the envelope of the inline surface elevation

(located at xZ �x) is compared to the value of the envelope for

the original surface at the location of this maximum.

This local measure for the spreading angle may be tracked

with time (Fig. 11) to highlight the rapid expansion of the
Fig. 11. Variation of an approximate local spreading angle with non-

dimensional time from linear focus for a range of wave steepness. The

spreading angle of the linear focused group is qZ158.
group local to the peak crest. Any group well dispersed in

frequency and direction will appear, at least locally, like a

plane wave, and so all the wave groups have an initially low

spreading angle. Under linear evolution this value increases up

to the value of 158, equal to the initial rms spreading angle (see

Section 2.2), at the focus time. For the nonlinear evolution

there is little departure from the linear solution until about 12

time periods from focus; after this time the rate of increase in

the spreading angle slows before increasing again until a

maximum angle is reached just before the nonlinear focus time.

As the wave group steepness increases there is a reduction in

the maximum spreading angle of the group, which is consistent

with the locally more planar front of the peak crest of Fig. 1.

For the wave group of steepness AkpZ0.3, analysed in Section

3.2, the local spreading angle has decreased by a factor of 2

(Fig. 12) to approximately 88. Beyond the focus time there is a

rapid reduction in the spreading angle as the groups become so

dispersed that it is impossible to distinguish between the linear

and nonlinear groups based on this local measure, but globally

there remain noticeable differences in the group shape

(Fig. 7(e) and (f)). A comparison of the maximum of the

local spreading angle with the square of the input wave

steepness (Fig. 12) suggests that the expansion of the group

local to the peak crest is consistent with a dominant third-order

process. It is worth noting that there is only one dominant

nonlinear process in the transverse direction, which is the

expansion of the group. Therefore any wave component that

does not participate in this process makes a negligible

contribution to the local spreading angle. Along the mean

wave direction, there are two nonlinear processes: the

contraction of the group for the strongly interacting com-

ponents, and the splitting of the group as the components not

participating in the main interaction get left behind. Wave

components, in the trailing group, which partially overlap the

peak crest will contribute to the local bandwidth and so will

contaminate this parameter. This local parameter is a true

measure of the contraction of the group only at high input

steepness, when the contraction process dominates the

behaviour along the mean wave direction.



Fig. 13. Amplitude spectra of the locally linearised signal, AkpZ0.3:

(a) tZK20Tp; (b) nonlinear focus; (c) tZ20Tp.
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4. Spectral evolution

It is reasonable to expect that the large nonlinear changes to

the group shape will result in significant changes in the

amplitude spectra for these wave groups. The amplitude

spectrum of the locally linearised surface elevation is

considered, as the dominant second-order bound wave

structure has been removed. This gives an approximation to

the underlying free waves at any time and returns the

underlying linear input spectrum when applied to the second-

order initial condition. For a group evolving linearly there are
no mechanisms by which energy may be transferred between

wave components and so the initial spectrum (Fig. 13(a))

remains unaltered with time. However, there has been

considerable energy transfer away from the spectral peak at

the point of nonlinear focus (Fig. 13(b)). Close to the kx-axis

(corresponding to the mean wave direction) there is a

broadening of the peak, particularly noticeable up to kxZ2kp,

and a contraction in the ky-direction (corresponding to the

transverse direction), which are consistent with the changes in

the shape of the envelope (Fig. 7). A small amount of energy

has been transferred to even higher wavenumbers, beyond kxZ
3kp, as noted from the slight step where the spectrum is only

shown up to kxZ3kp. This large transfer of energy to high

wavenumbers was observed in the wave basin experiments of

Johannessen and Swan [16] and later shown to correspond to

freely propagating waves in their numerical simulations [20]

(see also Bateman [19]). Large energy transfers take place well

after the focus time, but twenty time periods later (Fig. 13(c))

the group behaves sufficiently linearly for the spectral changes

to be considered permanent. There is a return of energy from

the highest wavenumbers, kxO2kp, close to the kx-axis and

further energy has been transferred to high wavenumbers up to

kxZ2kp. Two new structures have developed from the low and

high wavenumber sides of the spectral peak. A low level ridge

now extends from the peak region to the ky-axis, and so a small

amount of energy must be sent out sideways from the extreme

event. A secondary peak has formed at (kxZ1.2kp, kyZ0.28kp),

from which a high level ridge extends to higher wavenumbers.

This ridge makes a distinct angle with the kx-axis of about 558,

indicating a strong directional preference for the transfer of

energy. These two ridges show a strong likeness to similar

features seen in ensemble-averaged spectra from simulations of

a random sea state performed by Dysthe et al. [13] using a

modified NLS equation. The ridge on the high wavenumber

side of the spectral peak has also been seen by Bateman [19] in

his NewWave simulations based on a truncated JONSWAP

spectrum with a small directional spread.

The large energy transfers to low and high wavenumbers

cause a downshift in the position of the peak of the amplitude-

wavenumber spectrum, which is not possible for linear

evolution. The overall permanent downshift of the spectral

peak in wavenumber is about 10% for the steepest groups, an

effect which has also been observed for non-breaking spread

seas by Trulsen and Dysthe [36] and Dysthe et al. [13] in their

simulations of a modified NLS equation. However, this

downshifting of the position of the spectral peak should not

be confused with the downshifting that occurs for the

development of wave spectra over longer time scales. This

latter phenomenon sees the whole spectrum shift to lower

wavenumbers and dissipation due to wave breaking is

generally believed to be an important mechanism in this

process (a brief review is given by Dias and Kharif [37]).

5. Conclusions

Steep directionally spread focused wave groups on deep

water have been simulated to analyse their spatial structure and
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identify nonlinear dynamic processes in their evolution. For the

steepest wave groups, based on a spectral peak model, a

prominent peak crest forms at the front of the group with an

elevation and transverse width that are highly suggestive of a

‘wall of water’. This structure is significantly different to the

expected shape of an extreme event based on linear dispersion,

even after accounting for the second-order crest-trough

asymmetry. The formation of these events is controlled by

the group properties of the underlying wave field, as the

evolution of an extreme crest is essentially identical to the

evolution of an extreme trough. As the group focuses, dramatic

and rapid changes to the group shape are caused by two

nonlinear processes close to the focus time. There is a strong

contraction of the group along the mean wave direction, which

appears to be balanced by a strong expansion of the group in

the transverse direction. Three group properties — amplitude,

bandwidth in the mean wave direction and bandwidth in the

transverse direction — appear to be important in understanding

the behaviour of steep focused wave groups, with the

bandwidth changes being consistent with third-order near-

resonant [6] and resonant [4] processes (of Benjamin and Feir,

and Phillips respectively). In work currently in preparation, we

will compare the results of ‘fully’ nonlinear simulations to

those from simpler nonlinear evolution equations such as the

nonlinear Schrödinger equation [14].

The unidirectional focusing of wave groups leads to a

dramatic contraction of the group and significant gains in the

peak surface elevation, well beyond second-order theory. This

contraction process is also present in the physics of spread sea

wave groups, but there is now an additional process — the

expansion of the group in the transverse direction, that is not

possible in unidirectional physics. This expansion process

appears to be the reason for the absence of large amplitude

gains for the focusing of spread sea wave groups. These

strongly nonlinear processes lead to permanent net changes to

the amplitude spectrum of a spread sea wave group. Overall,

the physics of directionally spread wave groups is very

different to that for unidirectional groups: wave spreading is

crucial in understanding the behaviour of realistic extreme

wave groups. The nonlinear behaviour of such directionally

spread groups close to focus exhibits many of the hallmarks of

‘freak’ waves. Although the calculations presented here are for

groups of fixed shape (spectral bandwidth and directionality),

these parameters are chosen to be representative of those likely

to occur for large waves on the open sea. Thus, the shape

changes should be a robust and observable feature.

It may be that significant extra elevation, such as commonly

occurs in unidirectional wave tank experiments and simu-

lations, occurs very rarely in the open sea — only when a much

less directionally spread and frequency focused wave group

forms by chance.
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